Identification of Site-Specific Stroke Biomarker Candidates by Laser Capture Microdissection and Labeled Reference Peptide
نویسندگان
چکیده
The search to date for accurate protein biomarkers in acute ischemic stroke has taken into consideration the stage and/or the size of infarction, but has not accounted for the site of stroke. In the present study, multiple reaction monitoring using labeled reference peptide (LRP) following laser capture microdissection (LCM) is used to identify site-specific protein biomarker candidates. In middle cerebral artery occlusion (MCAO) rat models, both intact and infarcted brain tissue was collected by LCM, followed by on-film digestion and semi-quantification using triple-quadrupole mass spectrometry. Thirty-four unique peptides were detected for the verification of 12 proteins in both tissue homogenates and LCM-captured samples. Six insoluble proteins, including neurofilament light polypeptide (NEFL), alpha-internexin (INA), microtubule-associated protein 2 (MAP2), myelin basic protein (MBP), myelin proteolipid protein (PLP) and 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNP), were found to be site-specific. Soluble proteins, such as neuron-specific enolase (NSE) and ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCHL1), and some insoluble proteins, including neurofilament heavy polypeptide (NEFH), glial fibrillary acidic protein (GFAP), microtubule-associated protein tau (MAPT) and tubulin β-3 chain (TUBB3), were found to be evenly distributed in the brain. Therefore, we conclude that some insoluble protein biomarkers for stroke are site-specific, and would make excellent candidates for the design and analysis of relevant clinical studies in the future.
منابع مشابه
Erratum: Tingting Lian, et al. Identification of Site-Specific Stroke Biomarker Candidates by Laser Capture Microdissection and Labeled Reference Peptide. Int. J. Mol. Sci. 2015, 16, 13427–13441
n/a.
متن کاملBiomarker identification in neurologic diseases: improving diagnostics and therapeutics.
Identification of biomarkers in neurological disease remains impeded by many obstacles. Among them are the availability of tissue at the site of pathology, poor clinical diagnostics, the complexity of the brain and a general dearth of functional end points and models for validation. However, advances in technology have helped to overcome these challenges. Some of these advances include standard...
متن کاملLaser capture microdissection and colorectal cancer proteomics.
The ability to define protein profiles of normal and diseased cells is important in understanding cell function. Laser capture microdissection permits the isolation of specific cell types for subsequent molecular analysis. In this study we have established conditions for obtaining proteomic information from laser capture microdissected colorectal cancer cells. Laser capture microdissection was ...
متن کاملQuantitative Proteomics in Laser Capture Microdissected Sleep Nuclei From Rat Brain
The combination of stable isotope labeling of amino acids in mammals (SILAM) and laser capture microdissection (LCM) for selective proteomic analysis of the targeted tissues holds tremendous potential for refined characterization of proteome changes within complex tissues such as the brain. The authors have applied this approach to measure changes in relative protein abundance in ventral tegmen...
متن کاملMultiple reaction monitoring assay for pre-eclampsia related calcyclin peptides in formalin fixed paraffin embedded placenta.
Although the cause of pre-eclampsia during pregnancy has not been elucidated yet, it is evident that placental and maternal endothelial dysfunction is involved. We previously demonstrated that in early onset pre-eclampsia placental calcyclin (S100A6) expression is significantly higher compared to controls ( De Groot , C. J. ; Clin. Proteomics 2007 , 1 , 325 ). In the current study, the results ...
متن کامل